CHEMIE POLYFUNKTIONELLER LIGANDEN

LXXIII *. SYNTHESE, STRUKTUR UND REAKTIONSVERHALTEN VON CRYPTANDEN (BZW. SPHERANDEN) MIT DEN HETEROELEMENTEN ARSEN, SAUERSTOFF, SCHWEFEL UND STICKSTOFF

JOCHEN ELLERMANN*, ADOLF VEIT,

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, D-8520 Erlangen (B.R.D.)

EKKEHARD LINDNER* und SIGURD HOEHNE

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen (B.R.D.)

(Eingegangen den 10. Februar 1983)

Summary

The reaction of $N(CH_2CH_2Cl)_3$ (I) with $KAs(C_6H_5)_2 \cdot dioxane (1/2)$ in THF yields, as Sacconi et al. reported earlier, 80% of $N[CH_2CH_2As(C_6H_5)_2]_3$ (II). II is now obtained in a still higher quantity from the reaction of $[HN(CH_2CH_2Cl)_3]Cl$ (III) with $NaAs(C_6H_5)_2$ in liquid ammonia. Treatment of II with gaseous HI in dry CH_2Cl_2 results in the formation of $[HN(CH_2CH_2AsI_2)_3]I$ (IV), which is isolated by recrystallisation from THF as $[HN(CH_2CH_2AsI_2)_3]I \cdot THF (1/1)$ (IVa). IVa reacts with H_2O/NH_3 or $H_2S/N(C_2H_5)_3$ to give the novel cryptands $[N(CH_2CH_2)_3]_8 \cdot (As_4O_4)_6$ (V) or $[N(CH_2CH_2)_3]_8(As_4S_4)_6$ (VI), which also can be denoted as spherands. The reaction of V with dry gaseous HCl in benzene leads to $[HN(CH_2-CH_2AsCl_2)_3]Cl$ (VII). All the new compounds are characterized, as far as possible, by their IR, FIR, Raman, ¹H NMR and mass spectra. To determine the structure of V a single X-ray crystal study was carried out. Moreover II, which is already well-known but not completely characterized, is included in this discussion only for spectroscopic comparison.

Zusammenfassung

Nach Sacconi et al. führt die Umsetzung von $N(CH_2CH_2Cl)_3$ (I) mit KAs-(C₆H₅)₂ · Dioxan (1/2) in THF in 80%-iger Ausbeute zu $N[CH_2CH_2As(C_6H_5)_2]_3$

^{*} LXXII. Mitteilung siehe Ref. l.

(II). II konnte jetzt in noch höherer Ausbeute durch Umsetzung von $[HN(CH_2CH_2Cl)_3]Cl$ (III) mit NaAs $(C_6H_5)_2$ in flüssigem Ammoniak dargestellt worden. Die Umsetzung von II mit trockenem HI in CH_2Cl_2 führt nahezu quantitativ zu $[NH(CH_2CH_2AsI_2)_3]I$ (IV), das durch Umkristallisation aus THF als $[HN(CH_2CH_2AsI_2)_3]I \cdot THF (1/1)$ (IVa) isoliert wird. IVa reagiert mit H_2O/NH_3 bzw. $H_2S/N(C_2H_5)_3$ zu den neuartigen Cryptanden $[N(CH_2CH_2)_3]_8(As_4O_4)_6$ (V) bzw. $[N(CH_2CH_2)_3]_8(As_4S_4)_6$ (VI), die auch als Spheranden bezeichnet werden können. Die Umsetzung von V mit gasförmigem HCl in Benzol führt zu [HN(CH_2CH_2AsCl_2)_3]Cl (VII). Alle neuen Verbindungen wurden, soweit möglich, IR-, FIR-, Raman-, ¹H-NMR- und massen-spektroskopisch charakterisiert, von V wurde eine Röntgenstrukturanalyse angefertigt. Ausserdem wurde das bereits länger bekannte II, das bisher nicht eingehender spektroskopisch beschrieben wurde, zu Vergleichszwecken ebenfalls in die spektroskopischen Diskussionen mitaufgenommen.

Einleitung

Durch Umsetzung von Natriumdiphenylarsenid mit Halogenalkanen erhält man diphenyl-alkyl-substituierte Arsine [2]. Wie wir bereits früher zeigen konnten [3] lassen sich die Arsen-Phenyl-Bindungen durch trockenen Iodwasserstoff in CH_2Cl_2 selektiv spalten. Man gelangt auf diese Weise zu Diiodarsinoalkyl-Verbindungen. Die Umsetzung solcher Organoarsenhalogenide mit H₂O bzw. H₂S liefert Oxoorgano- bzw. Thio-organo-arsine, die in grosser Zahl als oligomere oder polymere Produkte weder ausreichend charakterisiert, noch in ihrer Struktur gesichert, beschrieben wurden [4]. Mit grosser Wahrscheinlichkeit liegen in diesen Oxo- und Thioorgano-arsinen AsO- und AsS-Ringsysteme von unterschiedlicher Ringgrösse vor. Als zwei der wenigen strukturell gesicherten Verbindungen seien die von uns erstmals gezielt dargestellten, adamantanstrukturierten 7-Methyl-1,3,5-triarsa-2,4,9trioxa-adamantan, CH₃C(CH₂AsO)₃ und 7-Methyl-1,3,5-triarsa-2,4,9-trithiaadamantan, CH₃C(CH₂AsS)₃[5], mit einem As₃O₃- bzw. As₃S₃-Ringsystem genannt. Die vorliegende Arbeit berichtet über zwei makrocyclische Hetero-Cryptanden mit sechs As₄O₄- bzw. As₄S₄-Achtringen, die über Triethylamin-Einheiten verbunden sind. Diese Cryptanden, die die Struktur eines nahezu starren Kugelgerüstes besitzen, können daher auch als Spheranden bezeichnet werden [6]. Weiterhin wird in dieser Publikation über Vorstufen und Abbauprodukte der Spheranden berichtet.

Ergebnisse und Diskussion

Präparative Ergebnisse

Durch Umsetzung von Tris(2-chloroethyl)amin (I) [7] mit Kaliumdiphenylarsenid \cdot Dioxan (1/2) in THF stellten Sacconi et al. [8] erstmals das tritertiäre Arsin Tris(2-diphenylarsinoethyl)amin (II) in 80%-iger Ausbeute dar (Gl. 1).

~

$$N(CH_{2}CH_{2}CI)_{3} + 3[KAs(C_{6}H_{5})_{2} \cdot 2Dioxan] \xrightarrow{IHF}$$
(I)

$$3KCl + N[CH_{2}CH_{2}As(C_{6}H_{5})_{2}]_{3} + 6 Dioxan \qquad (1)$$
(II)

II konnte jetzt in mehr als 90%-iger Ausbeute auch durch Umsetzung des Hydrochlorids III mit Natriumdiphenylarsenid in flüssigem Ammoniak erhalten werden (Gl. 2).

$$[HN(CH_2CH_2Cl)_3]Cl + 4NaAs(C_6H_5)_2 \xrightarrow{fl.NH_3} (III)$$

$$4NaCl + N[CH_2CH_2As(C_6H_5)_2]_3 + HAs(C_6H_5)_2 \qquad (2)$$

$$(11)$$

Das dabei entstehende Diphenylarsin kann zurückgewonnen und für weitere Umsetzungen verwendet werden.

Die Umsetzung von II mit trockenem Iodwasserstoff in CH_2Cl_2 führt unter Eliminierung von Benzol in nahezu quantitativer Ausbeute zu dem neuen Tris(2-diiodarsinoethyl)ammonium-iodid (IV) (Gl. 3).

$$N[CH_{2}CH_{2}As(C_{6}H_{5})_{2}]_{3} + 7HI \xrightarrow{CH_{2}Cl_{2}} [HN(CH_{2}CH_{2}AsI_{2})_{3}]I + 6C_{6}H_{6}$$
(3)
(II) (IV)

IV fällt als gelb-oranger, mikrokristalliner Niederschlag nach mehrstündigem Stehen aus der Reaktionslösung aus. Es enthält, wie ¹H-NMR-Spektren von IV in DMF- d_7 zeigen, etwa 0.5–1 mol CH₂Cl₂ und ca. 0.5 mol Benzol. Diese Solvatmengen können auch durch mehrtägiges Trocknen im Hochvakuum nicht entfernt werden.

Beim Erhitzen im Hochvakuum zersetzt sich IV schon ab etwa 80°C. Das Zersetzungsprodukt erstarrt als glasartiger, rotbrauner Schmelzkuchen, dessen ¹H-NMR-Spektrum nur noch schwache und breite, wenig charakteristische Signale zeigt. IV ist in den meisten organischen Lösungsmitteln, ausser THF, in dem es sich mässig löst, unlöslich. Gute Löslichkeit ist nur in stark polaren Solventien, wie DMF und DMSO, zu beobachten. Aus derartigen gesättigten Lösungen kristallisiert IV mit wechselnden Mengen Lösungsmittel aus. Nach längerem Kontakt der Kristalle mit diesen Lösungen ist eine fortschreitende Zersetzung zu beobachten. Aus solchen Lösungen konnten nur rotbraune Öle isoliert werden, die nicht weiter charakterisiert wurden.

Durch Erhitzen von IV in THF unter Rückfluss erhält man jedoch eine definierte Verbindung der Zusammensetzung $[HN(CH_2CH_2AsI_2)_3]I \cdot THF (1/1)$ (IVa). IVa ist eine gelbe, mikrokristalline Substanz, deren Löslichkeit mit der von IV übereinstimmt. Leitfähigkeitsmessungen von IVa in DMSO ergeben Werte, die in etwa einem 1:2-Elektrolyten entsprechen. Diese, über die Leitfähigkeit eines 1:1-Elektrolyten hinausgehenden Werte zeigen an, dass in DMSO auch (As-I)-Bindungen dissoziieren [9].

Die Umsetzung von IVa mit einem Ammoniak/Wasser-Gemisch führt in THF, wie bereits kurz mitgeteilt [10], zu dem neuen makrocyclischen Arsa-Aza-Oxa-Cryptanden $[N(CH_2CH_2)_3]_8(As_4O_4)_6$ (V) (Gl. 4).

$$8[HN(CH_2CH_2AsI_2)_3]I \cdot THF + 24H_2O + 56NH_3 \xrightarrow{\text{1HP}} (IVa) [N(CH_2CH_2)_3]_8 (As_4O_4)_6 + 56NH_4I + 8THF \qquad (4)$$

(V)

V kristallisiert nach mehrstündigem Stehen aus der Lösung in Form luftstabiler, grobkristalliner, farbloser Plättchen. In den meisten organischen Lösungsmitteln ist V unlöslich. In aromatischen Solventien, wie Benzol und Pyridin, ist eine gute Löslichkeit zu beobachten. Durch Umkristallisation aus Benzol/CHCl₃ erhält man die Verbindung analysenrein. Osmometrische Bestimmungen der relativen Molmasse in Benzol ergeben für V Werte, die obiger Zusammensetzung entsprechen.

Die Umsetzung von IVa mit einem Triethylamin-Schwefelwasserstoff-Gemisch in THF führt zu dem zu V homologen Arsa-Aza-Thia-Cryptanden $[N(CH_2CH_2)_3]_8$ - $(As_4S_4)_6$ (VI) (Gl. 5).

THE

$$8[HN(CH_{2}CH_{2}AsI_{2})_{3}]I \cdot THF + 24H_{2}S + 56N(C_{2}H_{5})_{3} \xrightarrow{IHF} (IVa)$$

$$[N(CH_{2}CH_{2})_{3}]_{8}(As_{4}S_{4})_{6} + 56[HN(C_{2}H_{5})_{3}]I + 8THF (5)$$

$$(VI)$$

VI fällt aus dem Reaktionsgemisch als gelblicher, amorpher Niederschlag aus. Aus CS_2 kristallisiert VI analysenrein, in feinen, gelblichen Nadeln. Ausser in CS_2 , in dem eine mässige Löslichkeit festzustellen ist, ist VI in den gängigen Solventien unlöslich. Auf Grund der schlechten Löslichkeit waren keine genauen osmometrischen Molmassebestimmungen möglich.

Die Umsetzung von V mit gasförmigem Chlorwasserstoff in Benzol führt unter Wasserabspaltung zu Tris(2-dichlorarsinoethyl)-ammonium-chlorid (VII) (Gl. 6). Dabei ist es wichtig, dass das entstehende Wasser mit dem Benzol azeotrop entfernt wird.

$$\begin{bmatrix} N(CH_2CH_2)_3 \end{bmatrix}_8 (As_4O_4)_6 + 56HCl \xrightarrow{Benzol} 8 \begin{bmatrix} HN(CH_2CH_2AsCl_2)_3 \end{bmatrix} Cl + 24H_2O$$
(V)
(VII)
(6)

VII fällt als farbloser, mikrokristalliner Niederschlag aus der Lösung an. Es ist in DMF und DMSO gut, in THF mässig und in allen anderen gängigen Lösungsmitteln unlöslich.

¹H-NMR-Spektren

Die Daten der Protonenresonanzspektren von II und IV-VII sind in Tab. 1 zusammengefasst. Bei allen Verbindungen fällt auf, dass die N- und As-gebundenen CH_2 -Protonen nicht in Tripletts aufspalten. Es wird vermutet, dass rotationsisomere Anordnungen möglich sind, die u. U. wegen der sterischen Hinderungen in Lösung stabil sind.

Die Zuordnung der CH_2 -As-Signale bei IV und IVa erfolgt durch Vergleich mit dem ¹H-NMR-Spektrum von $CH_3C(CH_2AsI_2)_3$ [11]. Bei IV wurden neben den in Tab. 1 angegebenen Signalen zusätzlich zwei Singuletts bei δ 5.85 (2H) und 7.46 ppm (3H) beobachtet, die den Solvaten Methylenchlorid und Benzol zugesprochen werden. Dementsprechend enthält IV ca. 1 mol CH_2Cl_2 und ca. 0.5 mol Benzol. Das ¹H-NMR-Spektrum von IVa zeigt in Übereinstimmung mit den Erwartungen noch zusätzlich die Signale des Solvat-THF. Trotz der Überlagerung der Signale bei δ 3.75 (CH_2 , THF) und 3.82 ppm (CH_2 -As) ist eine eindeutige Zuordnung auf Grund des Vergleichs mit dem ¹H-NMR-Spektrum von IV möglich. Die Integration bestätigt die Zusammensetzung von IVa.

TABELLE 1

¹H-NMR-SIGNALE (**4**-Werte in ppm) VON N[CH₂CH₂As(C₆H₅)₂]₃ (II), [HN(CH₂CH₂AsI₂)₃]I (IV), [HN(CH₂CH₂AsI₂)₃]I. THF (IVa), [N(CH₂CH₂)₃]₈(As₄O₄)₆

(V), [N(CH ₂	CH ₂) ₃ [8(A5 ₄ 5 ₄) ₆ (VI) UND [HN(CH2CF	1 ² ASU1 ²) ³ U1 (V11) (I	ni. Standard I Mo)			
Verbin- dung	Lösungs- mittel	(As-C ₆ H ₅)	(N-CH ₂)	(N-CH)	(As-CH ₂)	(0-CH ₂ ,THF)	(CH ₂ ,THF)
II	CDCI,	7.38 m (30H)	2.60 m (6H)		2.00 m (6H)		
IV a	$DMF-d_{\gamma}$		3.43 m (6H)		3.90 m (6H)		
IVa	DMF-d7		3.20 m (6H)		3.82 m (6H)	1.80 m (4H)	3.75 t (4H)
>	Pyrd5			2.35 m (24H)	2.35 m (48H)		
e IV	cs,			3.20 m (24ff) 2.75 m 3.10 m	2.75 m		
ИII	$DMSO-d_6$:	3.55 m (6H)		2.75 m (6H)		
a Ciaha Tavt	nam alati muu daga maga ka						

Siehe Text.

Das ¹H-NMR-Spektrum von V zeigt folgende Signale: δ 2.35 (m, 72H, N-CH und As-CH₂) und 3.20 ppm (m, 24H, N-CH). Das Integrationsverhältnis beträgt 3/1. Die Tieffeldverschiebung von 24 Protonen der Methylengruppen an den Stickstoffatomen lässt sich aus der Organoarsen-Käfigstruktur von V durch die Wechselwirkung dieser Protonen mit den Sauerstoffatomen in den As₄O₄-Ringen erklären. Aus den (NCH₂CH₂As)-Gruppierungen weist nämlich jeweils ein Proton der N-CH₂-Gruppe in Richtung eines Sauerstoffatoms in den As₄O₄-Ringen.

Das ¹H-NMR-Spektrum von VI zeigt diesen Effekt nur noch in abgeschwächter Form, da eine Wechselwirkung der Methylenprotonen an den Stickstoffatomen mit

TABELLE 2

CHARAKTERISTISCHE FRAGMENTE IM MASSENSPEKTRUM VON $N[CH_2CH_2As(C_6H_5)_2]_3$ (II) (Einlasstemperatur 120°C, Quellentemperatur 150°C)

Ion	m/e	rel.Int.	
$N[(CH_2)_2A_8(C_6H_5)_2]_3^+$	785	10.9	
$N[((CH_2)_2As)_3(C_6H_5)_5]^+$	708	14.0	
$N[((CH_2)_2As)_3(C_6H_5)_4]^+$	631	0.5	
$N[((CH_2), As)_2(C_6H_5)_5]^+$	605	2.5	
$N[(CH_2)_2][(CH_2)_2As(C_6H_5)_2]_2^+$	556	23.4	
$N[((CH_2)_2As)_3(C_6H_5)_3]^+$	554	0.8	
$H_2C=N[(CH_2)_2As(C_6H_5)_2]_2^+$	542	43.7	
$N[(CH_2)_2A_8(C_6H_5)_2]_2^+$	528	4.7	
$H_2C = N[A_s(C_6H_5),][(CH_2), A_s(C_6H_5)_2]^+$	514	4.7	
$N[(CH_2)_2][((CH_2)_2As)_2(C_6H_5)_3]^+$	479	7.8	
$[(C_6H_5)_2A_5(CH_2)_2]$ N + As (C ₆ H ₅)	478	7.8	
$N[((CH_2)_2As)_3(C_6H_5)_2]^+$	477	0.2	
$\left[(C_{6}H_{5})_{2} A_{5}(CH_{2})_{2}\right] N \rightarrow A_{5}(C_{6}H_{5})$	464	1.5	
$N[(CH_2)_2][((CH_2)_2As)_2(C_6H_5)_2]^+$	402	1.0	
[(C ₆ H ₅) ₂ As(CH ₂) ₂]N As] ⁺	401	1.0	
$As_2(C_6H_5)_3^+$	381	1.5	
$N[((CH_2)_2A_3)(C_6H_5)_2]^+$	376	3.0	
$A_s(C_4H_s)_3^+$	306	4.5	
$N[((CH_2), As)(C_2H_3)]^+$	299	1.5	
$As(C_6H_5)_2^+$	229	100.0	
	227	59.0	
\uparrow NI((CH ₂) ₂ As)(C ₆ H ₆)] ⁺	222	13.5	
$As(C_6H_5)^+$	152	14.9	

TABELLE 3

CHARAKTERISTISCHE	FRAGMENTE IM MASSENSPEKTRUM	VON	$[N(CH_2CH_2)_3]_8(As_4S_4)_6$
(VI) (Direkteinlass 200°C,	Quellentemperatur 200°C)		

Ion ^a	m/e	rel.Int.	
$As_4S_4^+$	428	4.2	
$As_{4}S_{3}^{+}$	396	100.0	
$N[(CH_2CH_2)_2As_3S_2]^+$	359	6.4	
$As_{3}S_{3}^{+}$	321	5.3	
As ₄ ⁺	300	34.0	
$As_3S_2^+$	289	41.5	
$H_2C=CHN[(CH_2CH_2)_2As_2S]^+$	279	7.4	
As ₃ S ⁺	257	70.2	
$N[(CH_2CH_2)_2As_2S]^+$	252	5.3	
H_2C -CHN[(CH ₂) ₂ As ₂ S] ⁺	251	3.2	
As ₃ ⁺	225	12.8	
$As_2S_2^+$	214	2.1	
As_2S^+	182	22.3	
As ₂ ⁺	150	15.9	
N As ⁺	145	6.4	
N As ⁺	144	5.3	
S4 ⁺	128	9.6	
$\begin{bmatrix} CH_2 - As \\ & \\ CH_2 - N \end{bmatrix}^+$	117	3.2	
AsS ⁺	107	45 7	
As ⁺	75	6.4	

^a Die S-haltigen Ionen beziehen sich auf Peaks mit dem ³²S-Isotop.

den Schwefelatomen in den As $_4S_4$ -Ringen erwartungsgemäss wesentlich geringer sein muss.

Es resultieren zwei überlagerte, breite und nicht mehr trennbare Multipletts bei δ 2.75 und 3.10 ppm, die keine Bestimmung des Integrationsverhältnisses mehr zulassen. Für [HN(CH₂CH₂AsCl₂)₃]Cl (VII) werden übereinstimmend mit den Erwartungen zwei Signalgruppen gefunden (Tab. 1).

Massenspektren

Von den Salzen IV, IVa und VII ist kein Massenspektrum zu erhalten. Die beiden Cryptanden V und VI sind im Massenspektrometer nicht unzersetzt verdampfbar. V zeigt ab Einlasstemperaturen über 350°C (70°C über dem Zersetzungspunkt) das Massenspektrum von As₄O₆ ohne Fragmente des Organogerüstes, woraus auf eine vollständige Zersetzung geschlossen werden kann. Dagegen zeigt das Massenspektrum von VI bei einer Einlasstemperatur von 200°C (98°C unterhalb des Zersetzungspunktes) als Fragment mit der höchsten Masse das As₄S₄-Ringsystem und dessen typische Fragmentierung, sowie Fragmente, die auf das Organogerüst schliessen lassen. Aus Gründen der Vollständigkeit wurde auch das Massenspektrum von II (Tab. 2) aufgenommen.

Schwingungsspektren

Tab. 4 zeigt die Schwingungsbanden der Verbindungen II, IVa, V, VI und VII. Die Schwingungen der Diphenylarsin-Gruppen von II wurden nach Whiffen [12] zugeordnet. Für die Charakterisierung der aliphatischen Schwingungen diente ein Vergleich mit der Ausgangsverbindung III [13]. Bei IVa fällt auf, dass die IR- und Raman-Spektren allgemein sehr intensitätsschwach sind. Die Ursache ist in der optischen Verdünnung durch die mehrfach enthaltenen AsI₂-Gruppen zu sehen. Derartige Effekte wurden bereits früher beobachtet [3,11]. Bezüglich der Zuordnung der Arsen-Halogen-Valenz- und Deformationsschwingungen von IVa und VII kann auf frühere eigene Arbeiten [3,11,14] und die anderer Autoren verwiesen werden [15,16]. Für IVa folgt aus der niedrigen Lage der NH-Valenzschwingungsbande bei 2700 cm⁻¹ und ihrer starken Verbreiterung, dass das Solvat-THF dieser Verbindung an die NH-Gruppe über Wasserstoffbrücken-Bindungen gebunden sein muss. Dementsprechend wird für den Festzustand von IVa die folgende Struktur vorgeschlagen.

Auch die verwandte Chloro-arsen-Verbindungen VII zeigt sehr niedrig liegende NH-Valenzschwingungsbanden zwischen 2700 und 2500 cm⁻¹. Da diese Verbindung kein Solvat-THF enthält ist anzunehmen, dass das in der Formeleinheit enthaltene ionogene Chlorid an die quaternäre NH-Gruppe ebenfalls über Wasserstoffbrücken-Bindungen assoziiert ist. Dementsprechend dürften im Festzustand von VII folgende Strukturelemente vorliegen.

Bei der Zuordnung der AsO- und AsS-Valenz- und Deformationsschwingungen von V und VI wurde auf frühere Arbeiten über Organoarsen-Käfigverbindungen Bezug genommen [5]. Bei V und VI ist eine auffallende Ähnlichkeit der IR- und Raman-Spektren, abgesehen vom Bereich der unterschiedlichen AsO- bzw. AsS-Schwingungsbanden, zu beobachten. Hieraus und aus dem Fragment-Massenspektrum von VI kann auf die Strukturgleichheit von V und VI geschlossen werden. Röntgenstrukturanalyse von $[N(CH_2CH_2)_3]_8(As_4O_4)_6$ (V)

Nach den Buerger-Präzessionsaufnahmen kristallisiert $[N(CH_2CH_2)_3]_8(As_4O_4)_6$ (V) hexagonal in der Raumgruppe $P\overline{3}$ mit den Gitterkonstanten *a* 1565.5(5), *c* 2336.2(8) pm, Z = 2, d_{ber} , 1.987 g cm⁻³, d_{gef} , 1.995 g cm⁻³.

Ein Molekül von $[N(CH_2CH_2)_3]_8(As_4O_4)_6$ (V) besteht aus sechs As-O-As-O-As-O-As-O-Achtringen, die miteinander durch an die Arsenatome gebundene Triethylamin-Einheiten verbunden sind. Die acht Stickstoffatome besetzen ungefähr die Ecken eines trigonal verzerrten Würfels, auf dessen Flächen sich annähernd die in der mit dem S₈-Ring vergleichbaren Kronenform vorliegenden Arsen-Sauerstoff-Ringe befinden. (vgl. Fig. 1a). Figur 1b zeigt einen dieser Ringe von oben und Fig. 1c, zur Verdeutlichung der Ringkonformation, von der Seite gesehen, während in Fig. 1d ein Triethylamin-Fragment mit den dazugehörigen Arsenatomen abgebildet ist. Um dem Leser die formelmässige Erfassung des komplizierten, kugelförmigen Cryptanden zu erleichtern, ist in Fig. le eine Teilaufsicht und in Fig. 1f die Gesamtaufsicht von V wiedergegeben. Aus Fig. 1e wird leicht ersichtlich, dass auf den Zentren der hypothetischen Würfelflächen die As₄O₄-Achtringe zu liegen kommen, während die weiterhin in diesem Molekül vorhandenen 12 N(CH₂CH₂AsOAsCH₂CH₂)₂N-Sechzehnringe über den 12 Würfelkanten zu liegen kommen.

Die Atome N(4) und N(7) (Fig. 1a) liegen auf einer kristallographischen dreizähligen Achse, so dass das Molekül die Symmetrie C₃ besitzt. Die As-O-Bindungen sind mit durchschnittlich 179 pm (vgl. Tab. 5) gegenüber der Summe der Kovalenzradien [17] und vergleichbaren Werten [18] deutlich verkürzt und scheinen damit π -Bindungsanteile aufzuweisen, während diejenigen zwischen Arsen und Kohlenstoff, sowie die C-C- und C-N-Bindungen bekannten Werten für Einfachbindungen an die Seite zu stellen sind [19-21].

Ein weiteres Indiz für die As-O-Mehrfachbindungsanteile sind die Aufweitungen der As-O-As- und O-As-O-Winkel, während diejenigen am Arsen mit Beteiligung des Kohlenstoffs erwartungsgemäss zwischen 92 und 97° liegen.

Die Strukturfaktoren wurden mit den Atomfaktoren für neutrale Atome [22] und den in Tab. 6 angegebenen Atomparametern berechnet. Eine Liste der beobachteten (F_0) und den berechneten (F_c) Strukturfaktoren kann bei den Autoren angefordert werden.

Experimenteller Teil

Die Versuche wurden, soweit erforderlich, unter Luft- und Feuchtigkeitsausschluss durchgeführt. Die verwendeten Lösungsmittel waren getrocknet und mit N_2 gesättigt. Triphenylarsin wurde gemäss Ref. [23], Tris(2-chloroethyl)ammoniumchlorid (III) gemäss Ref. [7] dargestellt.

Die Aufnahme der IR-Spektren erfolgte mit einem Infrarot Spektralphotometer IMR 16 der Fa. Zeiss, bzw. mit einem Beckman-IR-12-Doppelstrahlspektrometer. Die FIR-Spektren wurden mit einem Beckman-Fourier-Spektralphotometer IR 720 A, die Raman-Spektren mit einem Cary 82 Laser-Raman-Spektrometer (Varian) aufgenommen. Verwendet wurde ein Kryptonlaser (Erregerlinie 647.1 nm) oder ein Argonlaser (Erregerlinie 514.5 nm) der Fa. Spectra Physics. Zur Registrierung der ¹H-NMR-Spektren diente ein Gerät der Fa. Jeol: Modell JNM-PMX 60. Die Massenspektren wurden mit einem Spektrometer der Fa. Varian MAT, Modell 212

Zuordnung	II		IVa		IIA		v		IN	
	IR/FIR "	Raman ^b	IR/FIR a	Raman ^b	IR/FIR "	Raman ^b	IR/FIR a	Raman ^b	IR/FIR "	Raman ^h
₽(CH)[arom.]	3065s-m 3050s-m									
	3020s 3000ss	3022sst 7004c								
v(CH, Maliphat.)	2985ss	2978ss	2970s	2978ss		2971ss				2972s-m
IJI /7)	2965s, Sch	2956s-m, br					2964m	2960m-st	2960s-m	2960s-m, br }
	2950s	2946s-m, br		2940s		2938ss			2940s-m	2945s-m
	2930s	2914m		2900s	2920m-st	2918ss	2918m	2913st	2918s-m	2918m-st
		2870s	2870s						2890s	2894Sch
								2858s	2850s	2858s
	2800s, br	2818s, br		2830ss			2820m, Sch ₁	2825m, Sch ₁		2825Sch 1
		2774s, br			2780s		2792m-st ^f	2798st ^j	2792m	2806m-st ^f
					2740s		2710s-m	2706s-m	2710s-m	2711s
Kombinationston?							2640s	2636s		
v(NH0)			2700ss, br							
∕ (NH…Cl)					2650m, br					
					2550m-st	2550ss				
v(CC)[arom.] k	1582s	1578m								
. 8	13/25, 50n 1483s-m	14786								
WCH D			1480c Sch]		1478Sch]					
(7)	1455s-m	1464ss	1460s.Sch-	1450s	1460st	1458ss, br	1457m	1456s-m	1450st	1452s-m
	1438m		1440s-m		1440Sch }					
<pre> »(CC)[arom.]</pre>	1433m-st	1428s								
δ(CH ₂)	1410s	1388s	1405s J	1412s-m	1410Sch		1410s-m	1410s-m	1404m-st	1408s-m

17 5 TUE Ε 25 HUNCH 111/ ~ Ξ 0,0 NICH. CH NON (1-ma) UND RAMAN-SCHWINGUNGSPANDEN **TABELLE 4** IR. FIR-

162

	1360-		1276.00		1350m Cab	1366cc hr	1365° m	13640	1361m	1367°
o(Cf12)	1348s		1355ss		1345Sch	10, 6600001	111-20001	8 - 001		
⊭(CC)[arom.] o	1334ss 1325s	1334ss								
β(CH)[arom.] e	1303s-m	×								
$\gamma(CH_2)$	1275s	1270ss	1305ss	1312ss	1296s		1279m	1276s	1272st	1271s
	1265s		1265s	1282s 1253ss	1260s		1223s	12238	1213m-st	
$r(CH_2)$	1220s	1224s	1210ss 1180s	1199s-m	1210s-m 1178m		1198s-m	1195s-m	1195s-m	1182s-m
			1165s	1168s-m			1160s	1160ss, br	1150s	1152s
β(CH)[arom.] a c	1180s-m 1160s-m	1185s 1155s-m								
P(CN) bzw.			1148s	1142s	1152s-m	1116s	1130ss		1128s-m	
v(CC)	1108s		1110ss	1098s		1102s				
As-sens. q	1082s-m									
v(CN) bzw. v(CC)	1078m	1078m					1081m-st	1080s	1075st	1080s
β(CH)[arom.] d	1068m	1068s-m								
*(CO)THF]			1060ss	1066s						
v(CN) bzw. v(CC)					1060Sch ₍	1046s				
			1035m		1037m-st ⁵	1029s	1030s	1028s	1028s-т	1019s
r(CC)			1020m	1022s						
$\beta(CH)[arom.] b$	1025m	1022m								
King[arom.] p	1000s-m	998sst								
»(CN) bzw.	988s-m		995s		1000m		975s-m	976ss	968s-m	970ss
r(CC)			980s				960s	958ss	950s-m	950s
$\rho(CH_2)$	952s-m			914ss	925s	914s	920s-m	918s	910s-m	914ss
	945s, Sch ¹		900s	904ss	902s-m	886ss				
γ(CH)[arom] i	910s	908ss								
ρ(CH ₂)			875s-m		870s	870ss	867m-st	863s, br	856m-st	859s
γ(CH)[arom.] g	850m	847s								
$\rho(CH_2)$				823s			800m	800ss	790m	T aL
				808s		769ss		/605		34S
ν(As ₄ O ₄) γ(CH)[arom.] f	742st						740sst			
	733sst	738ss								

TABELLE 4 (Fo	rtsetzung)									
Zuordnung	Il	and a second and a s	IVa		ΝI		٨	and the second and th	١٧	
	IR/FIR "	Raman ^b	IR/FIR"	Raman ^h	IR/FIR a	Raman ^b	IR/FIR"	Raman ^h	IR/FIR ⁴	Raman ^h
p(CH ₂)	unter sst Dd t. 747		720s-m	734s 710s	725m	741s, br	unter sst Bd b 740	730ss 703c	and the second	
<pre>&(CC)[arom.] v</pre>	696sst	696ss		\$017			D41 0. 140	scni		
v(AsC)	670s	666m	695s 660a	5676	690s-m	686ss	693m 555	702s-m	693m 660-	696ss 5535
	\$\$57.00	630s	SUCO	644s	630s	630s. hr	632s	625s-m	584s-m	00.35 5835
		616m		606s-m				573m	568s-m	564m
$\nu(As_4O_4)$							596m-st 559st			
							545m-st	540s-m		
§(NCC)	unter Bd. beí	480 cm ⁻¹		528ss 492ss	510s-m		500s 480s	498s 472s	485s 470ss	488ss 473ss
As-sens. y	480m-st	48655								
	460m-st	464ss							:	
§(NCC)	406s 394s		418s 397s	438s 412s	429s-m 418s	425s			440ss	
	380s		384s-m							
₽(AsCl)					392m 380s-m 362st	384m 358m 336m				
P(As4S4)									375sst 360ct	390sst 355erm
δ(CCAs)	314Sch		100°		310st, br	316s-m 304s-m	345s-m 370c Sch	345ss 270cc	340Sch ³	333s 333s 30se
As-sens. t	305st	302s	870C			HI-etor	1001 10031	00070	111-0010	8000
§(CCAs)	280Sch]	288s-m			unter br. Bd. hei	2825	287s-m]	280s, br	295s	262s
	268m J	270s	270ss		310 cm ⁻¹ 240s		275Sch 260s	255ss	260s	244ss
µ(AsI)			255s,Sch 218sst	250Sch 208sst						

As-sens. u	220 m-st c	250s-m					
		238s-m 214s					
δ(As₄O₄)					230Sc 220m	ch 1-st ^c	
δ(CAsS)							210s
δ(CAsCl) und			31	81Sch]			
δ(AsCl ₂)			14	66st 48Sch	162s-m		
As-sens. x		187m					
δ(As, O,)						192s-m	
ř						172m	
						156s	
						124s	
δ(As ₄ S ₄)							156m
ř							122m
Gerüst-			113s-m		110s-m	l 14s-m	102ss
schwingungen		95st	80st		85s-m	92st	85s, Sch
•		78st				76m	70m }
							50m
				-		000	

" Bis 650 cm⁻¹ in KBr verpresst, von 700-400 cm⁻¹ in Nujol, ab 400-100 cm⁻¹ in Polyethylen. ^h Reine Festsubstanz.^c Nur bis 200 cm⁻¹ vermessen. Abkürzungen: sst = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, Sch = Schulter, br = breit.

. . . .

I

::

.....

; ;

Fig. 1a. Allgemeine Struktur des Moleküls V, in der die Atome durch ihre Schwingungsellipsoide (50% Wahrscheinlichkeit) dargestellt sind.

(IXE-5 Quelle) (70 eV) aufgenommen. Zur Bestimmung der Röntgenstruktur diente ein automatisches Einkristalldiffraktometer CAD-4 der Fa. Enraf-Nonius. Die Molmassen wurden mit einem Dampfdruckosmometer der Fa. Knaur, die Leitfähigkeit mit einem Gerät der Fa. WTM, Typ LF 39, bestimmt.

Tris(2-diphenylarsinoethyl)amin (II)

18.4 g (0.8 mol) Natrium werden in einem 2 l-Kolben in 1.5 l flüssigem Ammoniak unter starkem Rühren gelöst; die blaue Lösung wird mit 122.5 g (0.4 mol) Triphenylarsin zu Natriumdiphenylarsenid und Phenylnatrium umgesetzt. Das aus letzterem durch Ammonolyse entstehende Natriumamid wird anschliessend mit 21.4 g (0.4 mol) NH_4Cl zersetzt.

Zu der roten Lösung von Natriumdiphenylarsenid in flüssigem Ammoniak tropft man dann innerhalb von 1 h 24.1 g (0.1 mol) Tris(2-chlorethyl)ammonium-chlorid (III), aufgeschlämmt in 150 ml THF. Nach dem Abdampfen des Ammoniaks gibt man noch 200 ml Ether zu und erhitzt 3 h unter Rückfluss. Danach fügt man 300 ml Wasser zu, trennt die organische Phase ab, wäscht sie dreimal mit je 50 ml Ether nach, trocknet die vereinigten organischen Phasen über MgSO₄, filtriert und zieht

Fig. 1b. Aufsicht auf einen As₄O₄-Achtring.

das THF/Ether-Gemisch im Vakuum ab. Das zurückbleibende gelbliche Ol wird in 250 ml CHCl₃ gelöst und II durch Zugabe von 150 ml Ethanol ausgefällt. Durch Umkristallisation aus CHCl₃/C₂H₅OH erhält man II in Form feiner farbloser, nadelförmiger Kristalle, die abfiltriert, mit Ethanol gewaschen und im Hochvakuum getrocknet werden. Das als Nebenprodukt entstandene HAs(C₆H₅)₂ kann aus dem Filtrat durch Destillation gewonnen werden. II ist eine luftstabile Substanz, die gut löslich in THF, DMF, CHCl₃ und CH₂Cl₂, mässig löslich in Ether und Petrolether und praktisch unlöslich in Wasser, Methanol und Ethanol ist. Ausbeute: 72.6 g (92.3%). Schmp. 95–96°C, nach Lit. [8] 95–96°C. N[(CH₂)₂As(C₆H₅)₂]₃ (Gef.: C, 63.88; H, 5.78; N, 1.68. C₄₂H₄₂As₃N ber.: C, 64.22; H, 5.39; N, 1.78%; Molmasse: 785.5).

Tris(2-diiodarsinoethyl)ammonium-iodid · THF (1 / 1) (IVa)

Man löst 6.5 g (8.3 mmol) Tris(2-diphenylarsinoethyl)amin (II) in 250 ml CH_2Cl_2 und leitet dann 3 h, bis zur beginnenden Trübung der Lösung, trockenen Iodwas-

Fig. 1c. Seitenansicht eines As₄O₄-Achtringes.

Fig. 1d. Ansicht eines N(CH₂CH₂As)₃-Fragmentes.

serstoff ein. Man lässt die HI-gesättigte Lösung 24 h bei Raumtemperatur stehen. Das Tris(2-diiodarsinoethyl)ammonium-iodid (IV) fällt aus der Lösung in Form gelb-oranger, mikrokristalliner Plättchen aus, die abgesaugt, dreimal mit je 20 ml CH_2Cl_2 gewaschen und im Hochvakuum getrocknet werden. IV ist durch mehrtägiges Trocknen im Hochvakuum nicht von geringen Mengen CH_2Cl_2 und C_6H_6 zu befreien. Durch Extrahieren von IV mit 100 ml THF im Soxhlet-Extraktor erhält man das definierte Addukt $[HN(CH_2CH_2AsI_2)_3]I \cdot THF (1/1)$ (IVa), das aus der

Fig. 1e. Teilaufsicht auf V unter besonderer Berücksichtigung der formelmässigen Schreibweise.

Fig. If. Gesamtansicht von V unter besonderer Berücksichtigung einer vereinfachten Formelschreibweise.

heissen THF-Lösung in Form gelber, mikrokristalliner Plättchen kristallisiert. Nach dem Abkühlen filtriert man, wäscht mit 20 ml CH_2Cl_2 nach und trocknet im Hochvakuum. IVa ist in DMSO und DMF gut, in THF mässig und in allen anderen gängigen org. Lösungsmitteln unlöslich. In DMSO und DMF tritt nach einiger Zeit Zersetzung ein. Ausbeute 8.7 g (81.9%). Schmp.: $114-118^{\circ}$ C. [HN{(CH_2)₂AsI₂)₃]I · THF (1/1) (Gef.: C, 9.30; H, 1.25; N, 0.88. C₁₀H₂₁As₃I₇NO ber.: C, 9.35; H, 1.65; N, 1.09%; Molmasse: 1284.38). Leitfähigkeit (in DMSO) (23°C): Λ 1.86 cm² Ω^{-1} mol⁻¹.

$[N(CH_2CH_2)_3]_8(As_4O_4)_6(V)$

1.53 g (1.19 mmol) Tris(2-diiodarsinoethyl)ammonium-iodid THF (1/1) (IVa) werden in einem Schlenkrohr in 50 ml THF suspendiert und unter Rühren mit 5 ml H_2O und 2 ml konz. NH₃ versetzt. Nach Zugabe von Ammoniak tritt eine sofortige Entfärbung des Reaktionsgemisches ein, es entsteht eine klare Lösung, aus der nach Abdampfen von THF bei Raumtemperatur V in grobkristallinen Plättchen auskristallisiert, die durch einen amorphen Niederschlag verunreinigt sind. Das Rohprodukt wird abfiltriert, mit dreimal 5 ml Wasser gewaschen, getrocknet, anschliessend in 50 ml Benzol heiss gelöst und von unlöslichen Anteilen abfiltriert. Durch Zugabe von 5 ml CHCl₃ kristallisiert V analysenrein in plättchenförmigen Kristallen, die abfiltriert, mit CHCl₃ gewaschen und im Hochvakuum getrocknet werden. V ist in aromatischen organischen Lösungsmitteln, wie Benzol und Pyridin gut, und in anderen gängigen Lösungsmitteln unlöslich. Ausbeute 280 mg (63.5%). Schmp. (Zers.): 280°C. [N(CH₂CH₂)₃]₈(As₄O₄)₆ (Gef.: C, 19.92; H, 3.28; N, 3.65. Molmasse: 2863 (osmometr. in Benzol), $C_{48}H_{96}As_{24}N_8O_{24}$ ber.: C, 19.43; H, 3.26; N, 3.78%; Molmasse: 2967.46).

Zur Bestimmung der Struktur von V wurde ein Einkristall mit den ungefähren Abmessungen $0.2 \times 0.2 \times 0.1$ mm ausgesucht und in ein Markröhrchen abgefüllt. Auf einem automatischen Einkristalldiffraktometer CAD-4 wurden mittels $\omega/2\theta$ -

TABELLE 5

Bindungen	d	Bindungen	d	Bindungen	d
As(1)-O(1)	181(2)	As(8)-O(8)	180(2)	C(51)-C(52)	148(5)
O(1)-As(2)	173(2)	O(8)-As(5)	175(2)	C(61)-C(62)	157(5)
As(2) - O(2)	175(3)	As(1)-C(11)	205(4)	C(71)-C(72)	158(5)
O(2)-As(3)	183(2)	As(2)-C(21)	192(3)	C(81)-C(82)	157(5)
As(3)-O(3)	176(3)	As(3) - C(31)	205(4)	C(12)-N(3')	150(6)
O(3)-As(4)	181(3)	As(4) - C(41)	177(4)	C(22)-N(6')	141(6)
As(4)-O(4)	181(2)	As(5) - C(51)	196(5)	C(32)-N(3)	153(4)
O(4) - As(1)	183(2)	As(6) - C(61)	197(4)	C(42)-N(4)	159(5)
As(5)-O(5)	170(2)	As(7)-C(71)	183(4)	C(52)-N(3)	141(6)
O(5)-As(6)	183(3)	As(8)-C(81)	203(4)	C(62)-N(6)	157(6)
As(6)-O(6)	176(2)	C(11)-C(12)	152(6)	C(72)-N(7)	149(6)
O(6)-As(7)	186(3)	C(21)-C(22)	148(6)	C(82) - N(6')	148(6)
As(7)-O(7)	182(2)	C(31)-C(32)	156(5)		
O(7)-As(8)	173(3)	C(41)-C(42)	158(8)		
Winkel	ω	Winkel	ω	Winkel	ω
O(4) - As(1) - O(1)	102(1)	O(6) - As(7) - C(71)	96(2)	As(7)-C(71)-C(72)	111(2)
O(4) - As(1) - C(11)	92(1)	O(7)-As(7)-C(71)	95(1)	As(8)-C(81)-C(82)	106(3)
O(1)-As(1)-C(11)	96(1)	O(7) - As(8) - O(8)	102(1)	C(11)-C(12)-N(3')	115(3)
O(1) - As(2) - O(2)	102(1)	O(7) - As(8) - C(81)	97(1)	C(21)-C(22)-N(6')	110(3)
O(1)-As(2)-C(21)	95(1)	O(8)-As(8)-C(81)	93(1)	C(31)-C(32)-N(3)	112(3)
O(2)-As(2)-C(21)	95(2)	As(1) - O(1) - As(2)	119(1)	C(41)-C(42)-N(4)	108(3)
O(2)-As(3)-O(3)	101(1)	As(2) - O(2) - As(3)	118(1)	C(51)-C(52)-N(3)	111(4)
O(2)-As(3)-C(31)	93(1)	As(3) - O(3) - As(4)	118(1)	C(61)-C(62)-N(6)	115(4)
O(3)-As(3)-C(31)	96(2)	As(4)-O(4)-As(1)	115(1)	C(71)-C(72)-N(7)	110(3)
O(3) - As(4) - O(4)	101(1)	As(5) - O(5) - As(6)	120(2)	C(81)-C(82)-N(6')	108(3)
O(3)-As(4)-C(41)	92(2)	As(6) - O(6) - As(7)	117(2)	C(12'')-N(3)-C(32)	105(3)
O(4)-As(4)-C(41)	94(1)	As(7) - O(7) - As(8)	119(1)	C(12")-N(3)-C(52)	118(3)
O(8)-As(5)-O(5)	104(1)	As(8) - O(8) - As(5)	119(1)	C(32)-N(3)-C(52)	113(3)
O(8)-As(5)-C(51)	94(1)	As(1)-C(11)-C(12)	108(2)	C(42)-N(4)-C(42')	110(2)
O(5)-As(5)-C(51)	94(1)	As(2)-C(21)-C(22)	112(2)	C(22'')-N(6)-C(62)	113(2)
O(5)-As(6)-O(6)	101(1)	As(3)-C(31)-C(32)	105(2)	C(22")-N(6)-C(82")	117(3)
O(5)-As(6)-C(61)	97(2)	As(4)-C(41)-C(42)	113(4)	C(62)-N(6)-O(82'')	106(2)
O(6)-As(6)-C(61)	89(1)	As(5)-C(51)-C(52)	111(3)	C(72)-N(7)-C(72')	111(2)
O(6)-As(7)-O(7)	99(1)	As(6) - C(61) - C(62)	107(2)		

EINIGE ATOMABSTÄNDE d (pm) UND WINKEL ω (Grad) (Standardabweichungen in Einheiten der letzten Dezimalstelle sind in Klammern angegeben)

Registrierung die Intensitäten von 1832 symmetrieunabhängigen Reflexen gemessen. (μ (Mo- K_{α}) 78.1 cm⁻¹, $I \ge 3\sigma(I)$, $6 \le 2\theta \le 50^{\circ}$). Die Lösung der Struktur gelang mit den direkten Methoden [24], wobei alle Arsenatome gefunden wurden. Durch Verfeinerung nach der Methode der kleinsten Fehlerquadrate und anschliessende Differenz-Fourier-Synthesen konnten alle übrigen Atome ausser Wasserstoff lokalisiert werden. Mit Einheitsgewichten und anisotropen Temperaturfaktoren (C(81) und C(82) isotrop) konvergierte der *R*-Wert in einer abschliessenden Verfeinerung zu 0.087.

TABELLE 6

ORTSKOORDINATEN (in Einheiten der Elementarzelle) UND ANISOTROPE TEMPERATURPARAMETER (in pm²). Die Standardabweichungen in Einheiten der letzten Dezimalstelle sind in Klammern angegeben. Der Temperaturfaktor ist gegeben durch den Ausdruck: $T = \exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{13}ha^*c^* + 2U_{13}ha^*c^* + 2U_{13}ha^*c^*)$.

			A CALENDARY AND A CALE			A COMPANY OF A C	A REAL OF A	A REAL PROPERTY OF A REA	and the second se
Atom	x/a	y/b	z/c	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
As(1)	0.8616(3)	0.5866(3)	0.3983(2)	363(24)	363(24)	667(28)	-6(21)	- 49(21)	185(20)
As(2)	0.9896(3)	0.5727(3)	0.3045(2)	310(23)	397(25)	592(27)	-30(21)	- 44(20)	142(20)
As(3)	0.9523(3)	0.3756(3)	0.3543(2)	253(22)	320(23)	740(31)	-29(21)	- 64(21)	126(19)
As(4)	0.8260(3)	0.3910(3)	0.4494(2)	310(23)	384(25)	684(29)	-7(21)	- 59(20)	167(20)
As(5)	0.8310(3)	0.1634(3)	0.2504(2)	335(23)	337(24)	723(28)	- 22(23)	- 7(22)	175(20)
As(6)	0.6766(3)	0.1087(3)	0.1565(2)	369(24)	323(24)	707(30)	- 44(21)	51(21)	140(20)
As(7)	0.7962(3)	0.3158(3)	0.1039(2)	383(25)	426(26)	690(29)	31(22)	45(21)	201(21)
As(8)	0.9497(3)	0.3709(3)	0.1991(2)	285(22)	307(23)	772(30)	12(21)	40(21)	126(19)
<u>(i)</u>	0.9796(16)	0.6351(16)	0.3628(9)	473(157)	432(154)	488(155)	233(126)	132(124)	180(132)
0(2)	1.0386(15)	0.5044(15)	0.3355(12)	274(138)	201(138)	1305(233)	338(147)	83(143)	141(118)
0(3)	0.9352(17)	0.3879(18)	0.4279(11)	399(158)	697(184)	940(206)	89(157)	155(144)	448(148)
O(4)	0.8765(16)	0.5221(15)	0.4591(10)	390(146)	221(133)	(771)(77)	- 294(125)	- 308(131)	171(120)
0(5)	0.7695(18)	0.0911(16)	0.1935(9)	730(177)	305(141)	612(163)	199(128)	- 112(143)	346(140)
(9)O	0.7440(18)	0.1804(18)	0.0975(11)	458(167)	608(182)	976(215)	- 358(163)	- [5](155)	237(145)
0(1)	0.9206(16)	0.3511(16)	0.1272(11)	305(149)	342(152)	1092(222)	-120(148)	- 269(145)	77(122)
O(8)	0.9410(14)	0.2561(15)	0.2205(11)	73(122)	177(129)	1092(204)	108(133)	- 83(125)	- 91(104)
N(3)	0.9329(22)	0.1607(19)	0.3643(14)	484(208)	115(169)	989(253)	17(184)	446(201)	111(160)

(Fortsetzung)
6
TABELLE

								A CARDON CONTRACTOR OF A CARDON CONTRAC	
Atom	x/a	y/b	z/c	v_{tr}	U_{22}	$U_{3,3}$	$U_{2,3}$	$u_{\rm b}$	U_{12}
N(4)	0.6667	0,3333	0.5427(21)	679(255)	679(255)	402(344)	0	0	339(128)
N(6)	0.4961(22)	-0.1049(19)	0.1913(13)	553(211)	290(176)	773(228)	-217(162)	- 337(191)	310(171)
(L)N	0.6667	0.3333	0.0093(21)	633(248)	633(248)	460(343)	0	0	317(124)
C(11)	0.8996(30)	0.7094(30)	0.4473(15)	894(321)	695(307)	412(346)	- 453(234)	- 198(230)	497(272)
C(12)	0.9197(31)	0.7938(26)	0.4069(18)	772(328)	234(230)	919(331)	- 22(236)	- 104(274)	258(234)
C(21)	1.1147(27)	0.6789(28)	0.2796(16)	506(261)	646(283)	683(279)	147(225)	420(226)	356(241)
C(22)	1.1647(26)	0.6451(25)	0.2397(16)	416(242)	408(240)	651(276)	- 226(208)	- 353(215)	160(202)
C(31)	1.0637(23)	0.3443(23)	0.3652(22)	124(207)	80(215)	2166(518)	-133(264)	- 397(267)	71(176)
C(32)	1.0148(25)	0.2449(25)	0.3993(17)	364(234)	329(247)	1059(320)	139(227)	- 128(229)	311(210)
C(41)	0.8428(33)	0.3704(28)	0.5220(18)	1005(354)	446(266)	882(340)	121(239)	- 297(282)	550(276)
C(42)	0.7775(35)	0.3928(26)	0.5645(21)	938(338)	45(228)	1350(423)	- 139(250)	- 534(322)	- 13(232)
C(51)	0.8876(27)	0.0822(24)	0.2739(15)	555(257)	274(227)	488(243)	(161)101	- 181(220)	56(193)
C(52)	0.9681(32)	0.1358(33)	0.3154(15)	949(342)	1190(369)	482(261)	400(260)	- 78(249)	957(322)
C(61)	0.6238(28)	-0.0101(28)	0.1083(14)	641(276)	699(292)	360(230)	186(215)	38(207)	349(240)
C(62)	0.5758(29)	- 0.1022(26)	0.1493(16)	594(288)	418(259)	557(274)	74(217)	- 185(232)	78(226)
C(71)	0.8291(24)	0.3428(30)	0.0281(15)	182(223)	925(332)	665(285)	336(239)	102(204)	269(217)
C(72)	0.7341(30)	0.2981(29)	-0.0108(19)	621(305)	642(285)	1134(362)	- 51(269)	429(291)	507(247)
C(81)	1.0984(27)	0.4399(26)	0.1899(15)	530(107)					
C(82)	1.1278(24)	0.5369(25)	0.1553(14)	396(93)					

 $[N(CH_2CH_2)_3]_8(As_4S_4)_6$ (VI)

2.1 g (1.63 mmol) Tris(2-diiodarsinoethyl)ammonium-iodid THF (1/1) (IVa) werden in einem Schlenkrohr in 50 ml THF suspendiert und 2 ml Triethylamin zugegeben. Danach leitet man 10 min H_2S durch das Reaktionsgemisch. Die Suspension entfärbt sich bei Beginn des Einleitens sofort, und es entsteht kurzzeitig eine klare Lösung, aus der bald darauf VI und Triethylammoniumiodid ausfallen. Nach beendeter H₂S-Einleitung rührt man noch 1 h, gibt dann 10 ml Wasser zu, wobei sich das entstandene Triethylammonium-iodid vollständig löst, filtriert das amorph angefallene VI ab, wäscht mit Wasser und Methanol nach und trocknet im Hochvakuum. Das Rohprodukt wird in 100 ml siedendem CS₂ gelöst, von unlöslichen Anteilen abfiltriert und VI durch Zugabe von 15 ml CHCl₃ zur kalten Lösung bei -24° C auskristallisiert. VI fällt in Form gelblicher, nadelförmiger Kristalle an, die abfiltriert, mit Methanol gewaschen und im Hochvakuum getrocknet werden. VI ist in allen gängigen Lösungsmitteln ausser in CS_2 , in dem eine mässige Löslichkeit festzustellen ist, unlöslich. Ausbeute 360 mg (52.7%). Schmp. (Zers.): 298°C. $[N(CH_2CH_2)_3]_8(As_4S_4)_6$ (Gef.: C, 17.38; H, 2.83; N, 3.24. $C_{48}H_{96}As_{24}N_8S_{24}$ ber.: C, 17.20; H, 2.89; N, 3.34%; Molmasse: 3352.93).

Tris(2-dichlorarsinoethyl)ammonium-chlorid (VII)

150 mg (0.05 mmol) $[N(CH_2CH_2)_3]_8(As_4O_4)_6$ (V) werden in einem Schlenkrohr in 20 ml Benzol gelöst, dann wird 1 h trockenes HCl-Gas durch die Lösung geleitet. Das bei der Reaktion entstehende Wasser wird während des Einleitens durch das Benzol azeotrop entfernt. Aus der Lösung fällt nach einiger Zeit VII in Form farbloser, mikrokristalliner Plättchen aus. Das Produkt wird abfiltriert, zweimal mit je 10 ml CH₂Cl₂ nachgewaschen und im Hochvakuum getrocknet. VII ist gut löslich in DMSO, DMF und THF. In allen anderen gängigen Lösungsmitteln ist VII unlöslich. Ausbeute 210 mg (87.5%). Schmp. 99–102°C. [HN{((CH₂)₂AsCl₂)₃]Cl (Gef.: C, 12.70; H, 2.33; N, 2.51. C₆H₁₃As₃Cl₇ ber.: C, 12.60; H, 2.29; N, 2.45%; Molmasse: 572.09).

Dank

Der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie und der Hoechst AG, Frankfurt/Main, danken wir für die Unterstützung der vorliegenden Untersuchungen.

Literatur

- 1 J. Ellermann und A. Veit, Angew. Chem., 94 (1982) 377; Angew. Chem. Int. Ed. Engl., 21 (1982) 375.
- 2 W. Hewertson und H.R. Watson, J. Chem. Soc. (London), (1962) 1490.
- 3 J. Ellermann, H. Schössner, A. Haag und H. Schödel, J. Organomet. Chem., 65 (1974) 33.
- 4 S. Samaan in Methoden der Organischen Chemie, Bd. VIII/8 (Houben-Weyl-Müller), 4. Aufl., S. 144, Thieme, Stuttgart, 1978.
- 5 J. Ellermann, M. Lietz, P. Merbach, G. Thiele und G. Zoubek, Z. Naturforsch. B, 34 (1979) 975.
- 6 Topics in Current Chemistry Vol. 98, Host Guest Complex Chemistry I, Editor F. Vögtle;-E. Weber und F. Vögtle, S. 16; D. J. Cram und K.N. Trueblood, S. 43; Springer Verlag, Berlin, Heidelberg, New York, 1981.
- 7 J.P. Mason und D.J. Gasch, J. Am. Chem. Soc., 60 (1938) 2816.
- 8 L. Sacconi und R. Morassi, Inorg. Synth., Vol. XVI (1976) 174.
- 9 H. Schössner, Dissertation, Universität Erlangen-Nürnberg, (1976) 64.

- 10 J. Ellermann, A. Veit, E. Lindner und S. Hoehne, J. Chem. Soc., Chem. Commun., (1982)382.
- 11 J. Ellermann, H. Schössner und H.A. Lindner, Z. Naturforsch. B, 33 (1978) 603.
- 12 D.H. Whiffen, J. Chem. Soc. (London), (1956) 1350.
- 13 J. Ellermann und A. Veit, unveröffentlichte Ergebnisse.
- 14 J. Ellermann und M. Lietz, Z. Naturforsch. B, 37 (1982) 73.
- 15 D.M. Revitt und D.B. Sowerby, Spektrochim. Acta, 26A (1970) 1581.
- 16 D.M. Revitt und D.B. Sowerby, J. Chem. Soc. (London) (A), (1970) 1218.
- 17 L. Pauling, Die Natur der chemischen Bindung, 3. Aufl., Verlag Chemie, Weinheim/Bergstr. 1968.
- 18 J. v. Seyerl, B. Sigwarth und G. Huttner, Chem. Ber., 114 (1981) 1407.
- 19 G. Thiele, G. Zoubek, H.A. Lindner und J. Ellermann, Angew. Chem. 90 (1978) 133; Angew. Chem. Int. Ed. Engl., 17 (1978) 135.
- 20 M. Jakob und E. Weiss, J. Organomet. Chem., 153 (1978) 31.
- 21 R. Battaglia, H. Kirsch, C. Krüger und L.-K. Liu, Z. Naturforsch. B, 35 (1980) 719.
- 22 D.T. Cromer und J.B. Mann, Acta Crystallogr., A, 24 (1968) 321.
- 23 P. Pfeiffer, I. Heller und H. Pietsch, Chem. Ber., 37 (1904) 4621.
- 24 Programmsystem SHEL-76 von G. Sheldrick, Universität Cambridge 1976: Datenverarbeitungsanlage TR 440 des Rechenzentrums der Universität Tübingen.